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ABSTRACT

Wavelet-domain �1-regularization is a promising approach to

deconvolution. The corresponding variational problem can

be solved using a “thresholded Landweber” (TL) algorithm.

While this iterative procedure is simple to implement, it is

known to converge slowly. In this paper, we give the prin-

ciple of a modified algorithm that is substantially faster. The

method is applicable to arbitrary wavelet representations, thus

generalizing our previous work which was restricted to the or-

thonormal Shannon wavelet basis.

Numerical experiments show that we can obtain up to a

10-fold speed-up with respect to the existing TL algorithm,

while providing the same restoration quality. We also present

an example with real data that demonstrates the feasibility

of wavelet-domain regularization for 3D deconvolution mi-

croscopy.

Index Terms— Deconvolution, fast, wavelets, sparsity,

�1-minimization, 3D, microscopy.

1. INTRODUCTION

Modern experimental biology makes extensive use of fluores-

cent probes for selectively labeling structures of interest [1].

In this context, optical microscopy plays a key role. An inter-

esting challenge arises when the structures to be observed are

just a few times larger than the physical resolution limit of the

imaging instrument. In such situations, it makes sense to em-

ploy numerical image-enhancement methods. When applied

to widefield systems, this approach is commonly dubbed “de-

convolution microscopy”. One of its main difficulties lies in

the size of the data sets that are routinely produced in three-

dimensional (3D) fluorescence microscopy. This puts a strong

limitation on the computational complexity of potential de-

convolution procedures. In particular, deconvolution methods

of the latest generation are often considered too heavy com-

putationally and are scarcely used in practice.

A relatively novel approach to deconvolution is (non-

quadratic) wavelet-domain regularization, which was shown

to yield significantly better results than older-generation

methods [2]. The underlying variational problem can be
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solved using a simple iterative algorithm [2, 3, 4]; however,

this algorithm is known to converge slowly [2, 5, 6].

In previous work [6], we decoupled the problem into

subbands and derived a modified algorithm that is substan-

tially faster for the orthonormal Shannon wavelet basis. The

goals of the present work are 1) to give the principle of a

comparably fast algorithm that allows for more general (non-

bandlimited) wavelet representations and 2) to demonstrate

its efficiency on synthetic data as well as real 3D fluorescence

images.

2. VARIATIONAL FORMULATION OF
DECONVOLUTION USING WAVELET-DOMAIN

REGULARIZATION

Image formation in a widefield fluorescence microscope can

be modeled by a linear transformation that maps a 3D distri-

bution of fluorescent markers into a 3D distribution of light

intensity. Under normal optical conditions, this process is es-

sentially shift-invariant. The light intensity is typically mea-

sured by a CCD detector. Using an appropriate discretization,

the complete imaging process can thus be described by the

following equation:

y = Hx + b,

where H is a convolution (i.e. block-circulant) matrix and b
is a vector representing the distortions introduced by the op-

tics and/or the measurement device. The problem of decon-

volution is to estimate the signal of interest x from the mea-

surement y. This estimation can be extremely unstable when

H is ill-conditioned—such as in deconvolution microscopy—

and is thus usually performed with the help of regularization

techniques [7].

Wavelet-domain regularization is based on the paradigm

that many natural signals can be well approximated using

only a few elements from a given wavelet basis. In our case,

this means that x � Ww, where W is a “synthesis matrix”

whose columns are the elements of the wavelet basis and w is

a vector of wavelet coefficients with a small number of non-

zero entries. It is therefore natural to estimate x in the wavelet

domain, while imposing a “sparsity” constraint. This can be
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Fig. 1. A bivariate example showing that the cost functional

C(w) = C(w1, w2) usually has a sparse minimizer. The �1-

sphere on which the minimizer lies is determined by the regu-

larization parameter λ. The elliptic curves represent the level

sets of the discrepancy term; the one corresponding to the

smallest feasible value usually passes through a “corner” of

the �1-sphere.

done (see Fig. 1) by minimizing the cost functional

C(w) = ‖y − HWw‖2
2 + λ‖w‖1.

Here, the first term represents the squared Euclidian norm

of the discrepancy between the measurement and the esti-

mate; the second term is the sum of the absolute values of

the wavelet coefficients (up to the multiplicative regulariza-

tion parameter λ, which balances the relative influence of both

terms).

3. THE FAST THRESHOLDED LANDWEBER
ALGORITHM

Several research groups [2, 3, 4] have independently proposed

to minimize C(w) using a two-step procedure that alternates

between a Landweber iteration [7] and a soft-thresholding op-

eration; hence the name “thresholded Landweber” (TL) algo-

rithm. More precisely, starting from an arbitrary initialization

w̃, the TL algorithm consists in the recursive application of

the update formula

w = Tλτ/2{w̃ + τWT HT (y − HWw̃)}. (1)

Here, τ is the step size of the Landweber iteration and Tθ{·}
denotes a componentwise application of the soft-thresholding

function

Tθ(z) = sgn(z) max(|z| − θ, 0).

In this section, we revisit the derivation of the TL algo-

rithm presented in [3], so as to obtain a faster procedure. A

specificity of our approach is that we take into account the

subband structure of the wavelet family. To do so, we intro-

duce a set S that indexes the different subbands. The subscript

s will be used to refer to a subband s ∈ S. For example, ws

is the vector that contains the coefficients of w corresponding

to subband s and Ws is the matrix that reconstructs the com-

ponent corresponding to these coefficients. In particular, we

can write that

Ww =
∑

s∈S

Wsws.

Suppose that we are given an estimate w̃ of the minimizer

of the cost functional C. We then define the auxiliary func-

tional

A(w) = C(w) − ‖HW(w − w̃)‖2
2 +

∑

s∈S

αs‖ws − w̃s‖2
2,

where the constants αs are real and strictly positive. We as-

sume that they are chosen such that A(w) ≥ C(w), which

is always possible; furthermore, the above definition implies

that A(w) = C(w̃) when w = w̃. These two properties guar-

antee that, if we find a w such that A(w) ≤ A(w̃), we also

have C(w) ≤ C(w̃). In other terms, if we decrease the aux-

iliary functional A(w), we also decrease the cost functional

C(w).
It turns out that the coefficients of w are completely de-

coupled in this auxiliary functional, so that we can obtain

a closed-form expression of its minimizer. Indeed, defining

τs = α−1
s and zs = w̃s + τsWT

s AT (y − AWw̃), a short

computation shows that

A(w) = c +
∑

s∈S

αs

(
‖zs − ws‖2

2 + λτs‖ws‖1

)
, (2)

where c is a constant with respect to w. Thus, once the inter-

mediate vectors zs have been computed, A(w) is essentially

a positive linear combination of monovariate functionals of

the form |z − w|2 + 2θ|w|. One can verify that the mini-

mizer of such a monovariate functional is given by the soft-

thresholding function defined above.

It follows that the minimizer of the auxiliary functional is

given by ws = Tλτs/2{w̃s + τsWT HT (y − HWw̃)}, for

each subband s. When the constants αs have the same value

α for all subbands, this leads precisely to the TL algorithm

described in the beginning, with a step-size τ = α−1.

It is however not necessary to compute the exact mini-

mizer of A(w). In particular, expression (2) shows that the

auxiliary functional is still decreased if we compute the min-

imizer only for a single subband s, that is, if we define
{

ws = Tλτs/2{w̃s + τsWT HT (y − HWw̃)};
ws′ = w̃s′ for s′ ∈ S \ {s}. (3)
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This choice allows us to adjust the constant αs similarly to

what we did in [6], while not being bound to the Shannon

wavelet basis. The corresponding step size can be signifi-

cantly larger than in the standard TL algorithm, thereby pro-

viding a more effective update for subband s. Thus, when

applied successively to every subband, we call procedure (3)

the “fast thresholded Landweber” (FTL) algorithm. The de-

tails of its implementation will be discussed in a forthcoming

paper. The main difference with [6] is that the computation of

the residual is more involved because the subbands are cou-

pled for non-bandlimited wavelets.

4. EXPERIMENTAL RESULTS

We now present experimental results that confirm the effi-

ciency of the method for various wavelet families. We gener-

ated a synthetic test case by convolving the standard 256×256
MRI image with a Gaussian kernel of width σkernel = 2 pix-

els, and by adding white Gaussian noise of standard deviation

σnoise = 0.4266 to the result. We then compared the SNR im-

provement as a function of time during the execution of the

FTL and TL algorithms, with four classical wavelet bases.

The measurements were averaged over 30 noise realizations.

Both algorithms were used with the same settings. Since our

purpose is not to discuss restoration quality itself, we settled

on using the same value λ = 0.2 in all situations, which

gave satisfying results1 independently of the wavelet basis.

Furthermore, a 3-level decomposition depth was used for all

wavelet representations. We also used the same initialization

for the TL and FTL algorithms (obtained using a quadratic

Tikhonov regularization). Finally, we applied a random-shift

method for both algorithms, as in the work of Figueiredo and

Nowak [2].

Although the computation times depend on the software

and hardware environment (we implemented the algorithms

under Matlab on a 2.66 GHz Intel Xeon workstation), they

are representative of the acceleration that can be achieved in

practice. The graphs presented in Fig. 2 show the following

consistent trend: to achieve an SNR improvement comprised

between 7 and 8 dB, the FTL algorithm is faster than the TL

algorithm by a factor that varies roughly between 5 (for the

Haar basis) and 10 (for the 9/7 wavelet basis). The latter value

is comparable to the acceleration factor that we obtained for

the Shannon wavelet basis [6].

The FTL algorithm thus makes wavelet regularization

tractable for larger-scale deconvolution problems. We ap-

plied it for deconvolving a 3D stack of real fluorescence im-

ages (260 slices of 384×448 pixels). The data was acquired

on a standard widefield epifluorescence microscope with a

63× oil-immersion objective, and represents a C. Elegans

embryo labeled with three fluorophores (Hoechst, Alexa488

and Alexa568). Its maximum-intensity projection (along the

1The SNR figures are comparable to the ones obtained for a similar test

case in [2], where a more extensive study of restoration quality is proposed.
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Fig. 2. Comparison of the SNR improvement (in dB) as a

function of computation time (in seconds) for the TL and FTL

algorithms, using various wavelet bases.
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axial dimension) is shown in Fig. 3 (top). Each channel

was processed separately, using a computed PSF based on

a diffraction-limited model [1] which takes into account the

numerical aperture of the objective, the refractive index of

the immersion medium and the emission wavelength. The

deconvolution was performed with the Haar basis, using 3

decomposition levels for the radial (X-Y) dimensions and 2

decomposition levels for the axial (Z) dimension. Fig. 3 (bot-

tom) shows the maximum-intensity projection of the result.

It is seen that the typical widefield haze (due to out-of-focus

light) is significantly reduced. Also, many details inside the

cell are visible with more contrast (e.g. the microtubules

and the chromosomes). In the red channel, the vesicles are

brighter relatively to the background.

Fig. 3. Maximum intensity projections of a 3D widefield im-

age stack (top) and its deconvolved version using the FTL

algorithm (bottom).

5. CONCLUSION

We have presented an algorithm for wavelet-regularized de-

convolution that is up to one order of magnitude faster than

the standard method and works for arbitrary wavelet bases.

This makes wavelet regularization a serious alternative for

large-scale restoration problems; we have successfully ap-

plied it to 3D deconvolution microscopy.

In principle, the same algorithm could also be applied

with redundant wavelet representations2. Although our pre-

liminary results do not reveal significant differences between

wavelet bases, future work should explore this aspect in more

details.
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